Incremental Learning in a Fuzzy Intelligent System
نویسندگان
چکیده
This paper presents an incremental learning algorithm within the framework of a fuzzy intelligent system. The incremental learning algorithm is based on priority values attached to fuzzy rules. The priority value of a fuzzy rule is generated based on the fuzzy belief values of the fuzzy rule derived from the training data. The fuzzy incremental algorithm has three important properties. It can detect and recover from incorrect knowledge once new knowledge is available; it wil l not lose the useful knowledge generated from the old data while it attempts to learn from new data; and it provides a mechanism allowing to emphasize on knowledge learnt from the new data. The incremental fuzzy learning algorithm has been implemented in a fuzzy intelligent system for automotive engineering diagnosis. Its performance is presented in the paper.
منابع مشابه
A TS Fuzzy Model Derived from a Typical Multi-Layer Perceptron
In this paper, we introduce a Takagi-Sugeno (TS) fuzzy model which is derived from a typical Multi-Layer Perceptron Neural Network (MLP NN). At first, it is shown that the considered MLP NN can be interpreted as a variety of TS fuzzy model. It is discussed that the utilized Membership Function (MF) in such TS fuzzy model, despite its flexible structure, has some major restrictions. After modify...
متن کاملUpdating a priori information in fuzzy pattern recognition to improve classification performance
The main aim of this paper is to develop and implement the concept of incremental learning for fuzzy statistical classifiers. Such a scheme involves continuous modification of training data as learning progresses and is implemented with classifier systems that adapt to incremental information. This paper discusses the implementation of the above approach using a real-time fuzzy classifier syste...
متن کاملA novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems
Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...
متن کاملFuzzy Neural Networks and Evolving Connectionist Systems for Intelligent Decision Support
The paper presents a general framework of connectionistbased, intelligent decision support systems and its realisation with the use of fuzzy neural networks FuNNs and evolving fuzzy neural networks EFuNNs. FuNNs and EFuNNs facilitate learning from data, fuzzy rule insertion, rule extraction, and adaptation. Several applications of this framework on real problems are presented as case studies, t...
متن کاملشخصی سازی محیط یادگیری الکترونیکی به کمک توصیه گر فازی مبتنی برتلفیق سبک یادگیری و سبک شناختی
Personalization needs to identify the learners’ preferences and their characteristics as an important part in any e-learning environment which without identify learners’ mental characteristics and their learning approaches, personalization cannot be possible. Whatever this identifying process has been done more completely and more accurately, the learner model that based on it will be more reli...
متن کامل